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This paper discusses the stability of the flow of a low-Prandtl-number liquid contained 
in a shallow slot with differentially heated vertical endwalls. The effect of thermally 
insulating boundaries at the top and bottom of the container on wavelength selection 
is emphasized. Stability calculations indicate that, for Prandtl number Pr in the range 
0.015 < Pr < 0.27, the first perturbations to grow are overstable (oscillatory) 
longitudinal rolls with axes perpendicular to the endwalls, and with very large 
cross-stream wavelengths of about 9 to 15 layer depths. Previous studies using 
thermally conducting boundaries predict critical wavelengths of about three layer 
depths. The new results are in substantial agreement with an experiment using a 
differentially heated layer of mercury with aspect ratio (depth/length) 0.047 in both 
horizontal directions. The implications of the long-wavelength instability for the 
interpretation of thermal oscillations observed in other smaller-aspect-ratio con- 
figurations is discussed. 

1. Introduction 
We consider the flow in a rectangular cavity as shown in figure 1 .  Motion is driven 

by heating a fluid differentially at  the two endwalls. At small AT a simple unicellular 
flow is established where motion is up the hot wall, across the top, down the cold 
wall and returning across the bottom. Such simple thermally direct single-cell flows 
have come to be known as Hadley circulations. Experimental studies of such flows 
using low-Prandtl-number fluids like molten gallium (Hurle, Jakeman & Johnson 
1974) indicate that, as AT is increased beyond a critical value A%, thermal oscillations 
appear spontaneously. Hart (1972, hereinafter H72), showed that model Hadley cells 
could be unstable to oscillating rolls oriented perpendicular to the end walls. 
Subsequently Gill (1974) proposed this instability as the cause of the observed 
oscillation, and constructed an approximate theory that roughly agreed with the 
experiments of Hurle et al. and of Skafel (1972, reported in Gill’s paper). However, 
previous theories have not dealt correctly with the experimental boundary conditions 
at  z* = +$D. For example, H72 studied rigid conductors, Gill (1974) in essence 
studied free conductors, while the experiments have either rigid insulators or a rigid 
insulator and a free insulator. The purpose of this paper is to assess the importance 
of the vertical boundary conditions on the stability properties of the Hadley flow. 
Substantial effects are found, and these have led to a new experiment that satisfies 
the fundamental constraints on the theory better. 
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FIQURE 1. Basic geometry and thermal boundary conditions. 

2. The basic flow 
Consider the steady flow in the cavity of figure 1.  In general the Navier-Stokes 

equations can be normalized using the scales D2/v,  D ,  gaATD3/Lv, ATDIL for time, 
length, velocity and temperature respectively. Here g is the gravitational acceleration, 
v the kinematic viscosity, a the coefficient of thermal expansion, AT the endwall 
temperature difference, D the fluid depth and L the length of the container. The 
non-dimensional Boussinesq equations are 

( 1 )  
av 
at 
- +CTV*VV = -Vp+TZ+V2v, 

aT V2T - +Grv.VT = - 
at Pr 

The control parameters are the Grashof number 

gaATD4 
v2L 

Gr= 

V 

K 

and the Prandtl number 
Pr = -. 

As discussed in H72 and Cormack, Leal & Imberger (1974), if the slot aspect ratio 
6 = D / L  is sufficiently small, then a simple exact parallel-flow solution will exist away 
from thin turning regions near the endwalls. The parallel flow arises in response to 
a lateral temperature gradient. Advection of heat by this end-to-end counterflow is 
then balanced by vertical diffusion. The form of the solutions depend on the top and 
bottom boundary conditions at z = +f. For rigid insulators a t  both surfaces: 

v,= wo=o, 
Uo = a(Qz3-&z), (3) 

T, = ax++Gr P r ~ ( & z ~ - & ~ + 0 . 0 0 1 5 6 2 5 ) .  (4) 

If the upper surface is a stress-free insulator, then with z‘ = z + t ,  

Uo = ~ ( Q z ’ ~ - & z ’ ~ + ~ z ’ ) .  (5)  

T, = ax + Gr Pr a(&d5 -&d4 +Ad2 + b ) ,  (6 )  

where the constant b is chosen so that there is no net advective heat flux at any x. 
Since only gradients of To appear in the stability problem, its value is largely 
irrelevant here. 

The constant a in these solutions is formally obtained by matching these parallel 
flows to the turning flow in the two end regions. This has been done by Cormack et 
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FIQURE 2. (a) Basic velocity profiles. RR = rigid top and bottom. R F  = rigid bottom, 
stress-free top. ( b )  Basic thermal fields, z-dependent parts. 

al. (1974) for Pr and Gr = 0(1), and by Hart (1983) for Pr small and Gre2 = 0(1), in 
the small-s limit. To leading order in B ,  Hart (1983) finds a relationship, nearly 
identical with that derived by Cormack et at., 

a = 1 - 3.44 x 10-6P(Gr, Pr) Cr2 Pr2 E +  0 ( e 2 ) ,  (7) 

where F(Gr, Pr)  is a function that varies by about 20 % from 1 over the range of Gr 
and Prof interest for the stability considerations. This gives one limit to the validity 
of the interior parallel-flow solution. We assume the apparatus is shallow enough that 
a = 1 yields an accurate approximation to the actual interior Hadley circulation. 

The basic-flow profiles are shown in figure 2. In  both physical cases the vertically 
varying parts of T, are statically stable everywhere. This is contrasted with the rigid 
conducting solutions of H72 where thin statically unstable regions exist near z = +a. 
In the present case, no classical convective modes of instability are expected. We 
proceed to consider the stability of the above basic states. In  what follows we shall 
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refer to the case with two rigid and insulating boundaries as ‘rigid-rigid’ (RR), and 
the case with one rigid insulator below an upper stress-free insulator as ‘rigid-free’ 
(RF). 

3. The stability problem 
The governing equations are linearized about either (3) and (4) or (5) and (6). We 

consider two types of disturbance. Transverse modes have axes perpendicular to the 
basic flow andhave form 

w, T = (w(z), T(z)} eot eiks 

For small Pr, these turn out to be the classical shear waves, studied by Birikh (1966), 
modified here by the basic thermal field and associated perturbation advections. The 
perturbation equations for this mode are 

w ( d 2 - k 2 ) ~ + i k G r [ U O ( d 2 - k 2 ) ~ - ~ d 2 U 0 ] + k 2 T  = (d2-k2)2w, (8 )  

iRa dw 
k 

PrwT+ikRaUoT+RawGz+-= (d2-k2)T, 

where Ra = Gr Pr, and d = d/dz. 

and y, not x, so that 

The perturbation equations for the longitudinal modes are 

Longitudinal modes have axes parallel to the basic flow. They depend only on z 

u, w, T = {u(z), w(z), T(z)} eoteiku. 

W(d2-k2)W+k2T = (d2-k2)2W, (10) 

wu+GrwU,, = (d2-k2)u, (11) 

(12) Pr wT + Ra u+  Ra wT,, = (d2 - k2)  T. 

The above equations and perturbation energetics have been discussed in detail in H72. 
It is useful here to examine the mechanism for the longitudinal instability since it 
is not as well known as that for the transverse shear mode. Consider a case where 
U,, is approximately constant (for example the region near z = 0 in figure 2a).  Also 
consider Gr and Pr large enough so that dissipative effects are small. Then, as Pr+O 
(GrPr large), the T,, term will not enter, and (10)-(12) become simply 

W(d2-k2)W+k2T = 0, 

wu+GrwU,, = 0, 

wT+Gru = 0. 

With an assumed w oc cos xz, the eigenvalue w is given by 

w3 = Gr2 k2Uoz(x2 + k2)- l .  (13) 

Equation (13) predicts a monotonic instability if U,, > 0;  Hart (1971) g’ ives a 
theoretical and experimental study of this mode in a somewhat different context. 
However, if U,, < 0, an overstable mode should appear. H72 and Gill (1974) give 
physical interpretations. Of importance here is the tendency for the frequency of the 
oscillation to  increase with both Gr and k. The basic Hadley circulation has shear 
of both signs, so both the monotonic mode and oscillatory mode are possible. Further 
progress with the full problem including proper boundary conditions requires 
numerical solution of (8)-(12). 

The stability problem is solved by the Galerkin method, which reduces the ODES 
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FIGURE 3. Neutral curves for RR boundaries. Osc = oscillatory even longitudinal modes. 
Sta E, 0 = stationary even and odd longitudinal modes. Tr = transverse stationary modes. 

to  a real matrix eigenvalue problem that is solved by the QR-algorithm. The trial 
functions for the various boundary conditions are given in the appendix. For the 
longitudinal rigid-rigid problem there are non-combining even and odd modes (E and 
0). For the other problems the even and odd modes are coupled. 

Figure 3 shows the neutral curves for the rigid-rigid case. For moderately small 
Pr the overstable mode is the first to become unstable as Gr is increased. It cuts off 
at  Pr = 0.27. If Pr is made too large, the stabilizing effect of Toz, proportional to Ra2, 
overpowers the lateral gradient buoyancy generation, proportional to Ra, no matter 
how big Gr is made. As Pr approaches zero, Gr, increases because thermal diffusion 
damps the instability. The oscillatory mode is dominated by the lowest even 
eigenfunction. That is, the thermal perturbation is almost independent of z. This is 
allowed of course, because the boundaries are insulators. When Pr is small the 
perturbation tries to minimize the relatively large thermal diffusion by having such 
a z-independent structure. Thus (d2 - k 2 )  T becomes approximately - k2T. Thus to 
further minimize the dominant thermal dissipation the most-unstable oscillatory modes 
have very small k .  This is shown in figure 4. For mercury, Pr = 0.026, the oscillatory 
longitudinal mode with k = 0.7 is the most-unstable disturbance. 

In addition to the oscillatory mode, stationary longitudinal modes a t  much higher 
Gr and k are possible, being possibly the most unstable at higher Pr. The transverse- 
wave calculation did not converge very well for Pr larger than about 0.1, but it is 
likely that these modes can also exist at Pr x 1. The monotonic longitudinal modes 
have small vertical scales, and lie in the space near the walls at  z = &i where U,,, > 0. 
As such they can have larger k (and hence larger buoyancy generation k2T) before 
the diffusion operator (d2 - k2)  becomes dominated by k2. 

A similar situation exists for the case with rigid-free boundaries. Figure 5 shows 
the neutral curves for Pr = 0.001-1. The most-unstable mode is longitudinal- 
oscillatory, and again k is very small (figure 4). No other longitudinal modes of 
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FIGURE 4. Critical wavenumbers for moves in figures 3 and 5. A11 are for RR unless noted. 
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FIQURE 5. Neutral curve for longitudinal modes, case RF. 

instability were found over the range of Gr and Pr shown in the figure. Some trans- 
verse disturbances may exist, but they were not determined owing to computa- 
tional limitations explained in the appendix. For the oscillatory R F  mode the critical 
Grashof number is lower than in the RR case because the relaxed boundary condition 
at z = t allows a larger basic shear near z = 0 and a larger perturbation velocity u. 

Figure 6 shows that the predicted critical frequencies for the longitudinal oscillatory 
modes are relatively constant except near the Pr cutoffs. On the other hand, at fixed 
Pr and increasing supercriticality (Gr - Grc)/Gr, both the most rapidly growing 
wavenumber k and frequency oi increase. This is shown in figure 7 for the RR case. 
A similar monotonic increase of the k that maximized or, and oi, with Gr was found 
for the R F  oscillatory mode. These results reflect the simple prediction of (13). 

In conclusion, the theory predicts a long-wavelength, longitudinal, oscillatory 
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FIQURE 6. Critical frequency for the longitudinal oscillatory modes. 

instability for small-aspect-ratio Hadley circulations with a Prandtl number between 
about 0.015 and 0.27. It should be observable in liquid metals, but not in higher-Pr 
fluids like air or water. In these substances the dominant mode of instability will be 
either stationary longitudinal rolls, or more probably, transverse shear waves. It 
should be noted, however, that (7) suggests that it may be difficult to realize the basic 
state used here in the higher-Pr fluids. In comparison with the rigid-conducting case 
(H72), the roll wavelength here is about 3 times bigger, the critical Gr about 3 times 
smaller, and longitudinal oscillations are preferred over transverse stationary modes 
for the range of Prandtl number cited above. 

4. Comparison with experiments 
The major difference between the present results and previous theoretical results of 
Gill (1974), H72, and others, is that the low-Prandtl-number oscillatory instability 
with insulating upper and lower boundaries typical of all past experimental studies 
should occur at large wavelengths. Since most previous experiments were performed 
a t  relatively large aspect ratios, so that only about one roll (one half of a critical 
wavelength) could fit across the apparatus, it was decided to conduct a new 
experiment with as small an aspect ratio in both directions as possible. Our major 
comparison is with an experiment using mercury in a cell with D = 1.2 cm, L = 21 cm, 
and Ly = 21 cm, where Ly denotes the dimension in the cross-stream or cross-roll 
direction. Thus the aspect ratio is E = 0.047, and the cell can hold about 5 of the 
fastest-growing rolls as predicted by the theory. Attempts to attain still smaller E 

would lead to prohibitively long equilibration times L2/k and unwanted thermal 
boundary flux effects. The cost of mercury was another limiting factor. 

The cell was constructed out of 1.2 cm Perspex, with machined stainless-steel water 
jackets at the two ends. The water baths had long-term stability of 0.02 O C  compared 
with an onset temperature difference of about 1 O C .  The apparatus was levelled and 
isolated by surrounding the cell with foam insulation. The experiment was carried 
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FIQURE 7.  Supercritical U-values for the RR case; Pr = 0.026. Curves for 
values of Cr shown (K = x 1OOO). 

out by measuring the first appearance of oscillations with a 0.1 mm glass-enclosed 
thermistor probe inserted through a small hole in the upper lid. By using a phase-locked 
amplifier, sensitivity of 0.001 "C was easily obtained. The imposed temperature 
difference was increased by 5 % /24 hr until oscillations were observed. 

The thermistor measurements accurately determine the critical value of Gr for the 
first appearance of the oscillatory instability, as well as the critical frequency. The 
wavelength was measured by replacing the upper lid of the cell with a piece of Perspex 
that had a liquid-crystal thermometer sheet (Edmund Scientific Co., Gt Barrington, 
N.J.) in contact with the upper mercury surface. It serves as a rigid insulating 
boundary and reflects blue light when in contact with a liquid 5 "C above its ambient 
operating point (here 25 "C) and red when the liquid is at the ambient point. Hence 
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Author 

Skafel A 0.15 6.4 1 . 6 ~  lo4 0.49 56 53 57 
(from Gill) B 0.2 4.8 1 . 4 ~  lo4 0.65 62 64 73 
Pr = 0.026 

Hurl et al. C 0.21 2.0 2 . 5 ~  lo4 1.58 113 180 152 
Pr = 0.02 D 0.29 1.5 7 . 0 ~  lo4 2.09 247 570 390 

TABLE 1.  Comparisons with previous experiments 
~~ 

photographs of the sheet from above yield colour contours of the total temperature 
field. For optimal performance it is necessary to photograph at supercritical 
conditions with a 5 "C drop across the cell, but the wavelength of weak oscillations 
can also be measured. Figure 8 (plate 1 )  shows two photographs at supercritical 
conditions where the perturbations across the tank are clearly visible. There are 
roughly 5 rolls that oscillate periodically and disturb the normal lateral thermal 
gradient associated with the basic state. 

For this experiment with Pr = 0.026, the theory predicts the following critical 
quantities: Gr = 7.1 x lo3, k,  = 0.71, wi = 36.5. The experimental values are 
Gr = 9.3 x lo3, k ,  = 0.8 f 0.1, oi = 54 4. The agreement is reasonable, considering 
that the aspect ratio is still rather large, since at such low predicted and observed 
wavenumbers it is hard to get a purely longitudinal disturbance. Using figure 7 we 
can evaluate the predicted frequency in terms of the observed Gr and k to get a new 
theoretical value of wi = 49 that is in better agreement with experiment. Further 
predictions of figure 7 are verified by data a t  higher Gr = 1.8 x lo4 where the experi- 
mental frequency is wi = 92 f 5 compared with a theoretical value of wi = 83. Thus 
the experiment confirms the major predictions of the theory; that the dominant 
instability is a longitudinal oscillatory one of low wavenumber whose energy source 
is the basic lateral temperature gradient of the Hadley cell. 

It is clear that with a critical wavelength of 90-160 depending on Pr and the upper 
boundary condition, moderate-aspect-ratio experiments will show unstable 
disturbances strongly influenced by sidewalls. Table 1 shows an attempt to compare 
the theory with typical observations of previous investigators. The value fkmin gives 
the smallest k that would allow one roll to fit across the experimental apparatus. 
Except for case A there is a strong mismatch between box size and the preferred k .  
From the theory GC = 7.1 x lo3 for mercury and 6.9 x lo3 for gallium. It is obvious 
that there are strong geometric effects present experimentally that are not accounted 
for in the theory, In the gallium experiments the fact that the measured critical values 
of Gr are so much higher than the predicted value probably also reflects a severely 
modified basic thermal field with either a becoming very small, or some sort of a 
non-parallel basic flow being present. One should also note the very low theoretical 
growth rates near critical. For mercury and a depth of 1 em at 14 % supercriticality, 
the e-folding time is about 3000 s. It may then be difficult to observe the unstable 
rolls extremely close to the critical Gr. The predicted frequencies at the observed 
values of Gr and k = $kmin are within a factor of two of the observations, suggesting 
the longitudinal roll instability is present though strongly modified by the finite 
aspect ratio. 

This research was sponsored by the National Science Foundation, Grant ATM 
81-11718. 
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Appendix. Trial functions and truncation levels 

These have 
A. 1. Longitudinal modes, rigidrigid insulators 

u( * g )  = w( +g)  = wz( kt) = T,( *+) = 0. 

w = x a, EdA, 2) + b, O,@i z ) ,  
We take N 

6-1 

where 

with 

Also 

cosh A, z cos A, z E .  = -~ 
a cosh& cos+A,’ 

sinh A, z sin A, z 
sinh $A, sin +A, 

tanhgA, + tan@, = 0, 

o,=----- 

coth&,+cot&, = 0. 
N 

6-1 
u = X c,cos(2i-1)xz+drsin(2ixz) 

T = x eicos2(i-1)xz+f6sin(2i-l)xz. 
N 

6-1 

This expansion yields a 3N x 3N matrix eigenvalue problem. Accurate eigenvalues 
are obtained with N = 8. Earlier work (H72) failed to include the z-independent 
thermal mode, and therefore was in error for these boundary conditions. 

A.2. Longitudinal modes, rigid-free insulators 
For convenience we transform to the region z = (0 , l ) .  The boundary conditions are 

u(0)  = u,(l) = w(0) = w,(l) = T,(l) = w(1) = C(0) = wzz(l) = 0. 

@--ha Z - e-htk-2) sin A, z +-- 
tan A, 

We take 

with 

Also 
tanh A, - tan A, = 0. 

N N 

t-1 i-1 
u = x bisin+(2i-1)xz, T = x c,cos(i-1)xz. 

Convergence tests indicate that N = 8 gives o to within 0.1 yo of N = 16. 

A.3 .  Transverse modes 
These were computed only for the double-rigid-insulator case. The rigid-free case 
yields a complex matrix since the basic state is non-symmetric. These modes are 
expensive to compute (double precision is necessary for Pr 2 0. l ) ,  so we limit our study 
to one case, these modes being of less interest. The eigenfunctions were the same as 
in gA.1 above. They are unfortunately not very efficient, and N = 14 was necessary 
for Pr = 0. Beyond Pr = 0.1 our scheme did not converge very well, and as this is 
outside our region of interest we have not pursued calculations beyond this point. 

The calculations were performed on a VAX 11/750 with digit arithmetic. The 
earlier study (H72) used a CDC6600 with 12-digit precision. 
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